# Generated by pandoc-plot 1.9.1
import matplotlib.pyplot as plt
import numpy as np
np.random.seed(2019)
import numpy as np
import matplotlib.pyplot as plt
from skued import diffread
from pathlib import Path
from math import floor
def center_of_mass_masked(im, mask):
rr, cc = np.indices(im.shape)
weights = im * mask.astype(im.dtype)
r = np.average(rr, weights=weights)
c = np.average(cc, weights=weights)
return int(r), int(c)
im1 = diffread(Path("images") / "autocenter" / "graphite.tif")
mask1 = diffread(Path("images") / "autocenter" / "graphite_mask.tif").astype(bool)
im2 = diffread(Path("images") / "mnxc" / "Cr_1.tif")
mask2 = np.ones_like(im2, dtype=bool)
mask2[0:1250, 950:1250] = False
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(6,6))
for (ax, ax_r), im, mask in zip([(ax1, ax3), (ax2, ax4)], [im1, im2], [mask1, mask2]):
r, c = center_of_mass_masked(im, mask)
side_length = floor(min([r, abs(r - im.shape[0]), c, abs(c - im.shape[1])]))
rs = slice(r - side_length, r + side_length)
cs = slice(c - side_length, c + side_length)
im = im[rs, cs]
ax.imshow(im, vmin=0, vmax=200, cmap='inferno')
ax_r.imshow(im[::-1, ::-1], vmin=0, vmax=200, cmap='inferno')
ax.axis('off')
ax_r.axis('off')
plt.tight_layout()