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Abstract

The use of optical cavities in Optomechanics re-
quires that the laser and cavity are locked together.
To counter the effect of environmental mechani-
cal noise on the length of the cavity, one needs
to apply a cancelling response to the cavity length
(via piezoelectric elements) as quickly as possible.
This report details the making of a high-speed dig-
ital signal processing system built using a field-
programmable gate array (FPGA) capable of dis-
playing any filter and the design of the filters that
could be used to attenuate this mechanical noise.

1 Introduction

The Sankey Laboratory is concerned with the interaction
between light and mechanical objects, or more specifi-
cally, radiation pressure and thin membranes. The typi-
cal setup consists of an optical cavity (two mirrors facing
each other), with a mechanical object (membrane) in be-
tween.
A typical setup of the Sankey Laboratory uses a thin
silicon nitride membrane as mechanical object, which is
weakly tethered to the environment (see figure 1). This
membrane is held in an optical cavity, in an ultra-high
vacuum environment (pressure less than 10−7 Pa). The
nominal cavity length is 1 cm, with a membrane 100 nm
thick [1]. The laser used to stimulate the membrane has
a wavelength of 1550 nm. At this wavelength, silicon ni-
tride membranes of 100 nm thick have a transmittance
of approximately 30% [2], which enables light to pass
through the membrane and reflect on the end mirror;
therefore, light is continually interacting with the mem-
brane from both sides.

Maximum interaction between light and membrane oc-
curs when the power circulating in the cavity is maxi-
mum. Power is maximum when the laser light is in res-
onance with the cavity length; it is said that the laser
is locked to the cavity, and that the cavity is at reso-
nance length. If the cavity length drifts away from the
resonance length, circulating power drops and there are
fewer photons-membrane interactions. Therefore, it is

important that the cavity length stays as close as possi-
ble to resonance length.

Alternatively, a laser-locking system would en-
able the team to precisely tune the cavity length,
which could be used to adjust the cavity resonant
frequency with respect to the laser frequency. This
intentional “detuning” could be used for laser cooling [3].

Figure 1: A weakly-tethered silicon nitride membrane to
be used in an optical cavity, made by the Sankey Labo-
ratory at McGill. Picture taken by Christoph Reinhardt.

Mechanical noise from the environment (vibrations
from colleagues talking, traffic nearby, etc.) contributes
to vary the cavity length randomly. By examining the
light that exits the cavity, it is possible to determine the
difference between the cavity length and the resonance
length (called the detuning length). This measurement
is not part of the project, and thus it is assumed that
the system to be built receives information about the de-
tuning length in the form of a voltage. As time goes by,
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the detuning length varies due to mechanical noise; this
sends a voltage signal to the system described in this re-
port. To adjust the cavity length, piezoelectric elements
are attached to one of the mirrors; applying a voltage to
the piezoelectric elements moves the mirror.
The general idea is to process the detuning length signal
in order to apply an appropriate response to piezoelec-
tric elements, with the objective of keeping the detuning
length small. This procedure is called feedback locking.

Section 2 describes the feedback locking theory and
digital signal processing theory necessary to understand
the system design. Section 3 describes the project’s re-
quirements and the system design. Section 4 details how
filters are implemented. Finally, section 5 details the
testing done on some digital filters.

2 Theory

We start by explaining what is a transfer function, and
then move on to describe a general feedback control sys-
tem. Then we show how to “translate” a filter into
discrete-time hardware.

Linear Time-Invariant Systems

Figure 2 shows a block diagram of a feedback loop. The
arrows represent signals moving through the circuit,
which is composed of three components: a controller
(C), a plant (P), and a sensor (F).

For a physical circuit, it is reasonable to assume
that the output of the components do not depend on
time explicitly, but only on the input; moreover, it
is also reasonable to assume that at low frequencies,
the components behave in a linear way. With these
assumptions, the feedback loop of figure 2 becomes a
linear time-invariant (LTI) system. Analog LTI systems
are governed by laws expressed as linear differential
equations; it is therefore natural to analyze analog
systems using the Laplace Transform.
A convention in this report is that the Laplace transform
of the function f(t) is LT {f(t)} = F (s), where t is a
real number, and s is complex.

We define the transfer function of a component to be
the ratio of the output and the input in the Laplace s-
domain; thus, for an input signal x(t) and an output
signal y(t), the transfer function T (s) satisfies:

T (s) = Y (s)/X(s)

An important property of LTI systems is that the
transfer function is always a rational function in the
Laplace s-domain [4, p. 32]. We note that a realizable
LTI system cannot have any poles in the right half of the
s-plane (which is a complex plane), as it would mean that
a finite input can create an unbounded output (the right
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Figure 2: General feedback loop. The three components
are the controller (C), the plant (P), and the sensor (F).
The objective is to create C so that the output signal y(t)
be the same as the reference input signal r(t). Noise is
added into the system via n(t). The signal e(t) = r(t)−
y(t) is the tracking error, which has to be minimized.

half s-plane represents exponentials growing in time) [5,
p. 22].

2.1 Feedback Control Theory

All feedback control systems have three components: a
controller, a sensor, and a plant (see figure 2). The plant
is the object to be controlled; in our case, the plant
is th ecavity length. The sensor measures the output
from the plant; in our case, a photodiode examines the
light coming out of the cavity. The controller uses the
feedback from the sensor to control the plant [4, p. 31].
There are two inputs: noise affecting the plant, which
is represented in figure 2 as n(t), and a reference signal
r(t) that tells the controller what is the desired output
y(t). In general it is assumed that the transfer function
of the sensor is unity, and so it could be omitted from
the diagram of figure 2.

The controller is the only component over which we
have total control. The objective in the design of a feed-
back loop is two fold. First, given a plant (and a sensor)
with known frequency-domain transfer functions P and
F , the controller has to be designed so that the whole sys-
tem is stable; that is, for finite input and noise r(t) and
n(t), the output y(t) is also finite. Second, the controller
has to be designed so that the plant output y(t) follows
the reference input r(t) as close as possible [4, p. 63].
Note that r(t) is often set to 0 or a constant value. In
our case, r(t) might be the desired cavity length.

Stability in the Feedback Loop

With the additional assumption that the transfer func-
tion of the sensor F (s) equals unity, it is possible to use
specify the transfer function of the controller such that
the whole system is stable.

Let A be the set of stable, real-valued rational func-
tions. Let P(s) and C(s) be the transfer functions
of the plant and controller respectively, and assume
P (s), C(s) ∈ A. Since P(s) is a rational function (be-
cause linear and time-invariant), we can write P (s) =
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N(s)/M(s), where N(s) and M(s) are polynomials in
s, and N(s),M(s) ∈ A. Using Euclid’s algorithm, it is
possible to find two polynomials X(s) and Y (s) such that

N ·X +M · Y = 1 (1)

Doyle et al. [4, p. 71] described that the set of all con-
troller transfer functions C(s) for which the feedback
loop is stable (with the assumptions of an LTI system
and F (s) = 1) is defined as:

C ∈
{

Q

1− PQ
: Q ∈ A

}
=

{
X +MQ

Y −NQ
: Q ∈ A

}
(2)

that is, there exists a stable and real-valued transfer func-
tion Q(s), which can be used to find the form of C(s) ac-
cording to equation 2. Therefore, designing a controller
that makes the feedback loop stable results in finding the
right Q(s).

Asymptotic Tracking

The second goal of designing the controller transfer func-
tion C(s) consists of choosing C(s) according to equation
2 such that the output y(t) follows r(t). While we cannot
expect y(t) to be equal to r(t) at all times due to noise
n(t), we require that y(t) asymptotically tend to r(t); we
would like y(t) ∈ [r(t)− ε, r(t) + ε], for some small real
error ε, at all times.

Assuming the transfer function P (s) is known, the
procedure for finding C(s) is described as follows [4,
p. 74]. Define the transfer function from r(t) to e(t)
in the n(t) = 0 case to be S, and the transfer function
from r(t) to y(t) in the n(t) = 0 case to be T . From
R(s)− Y (s) = E(s) and Y (s) = E(s) · C(s) · P (s):

S =
1

1 + P (s) · C(s)

T =
P (s) · C(s)

1 + P (s) · C(s)

S is called the sensitivity function, while T is called the
complementary sensitivity function (as S + T = 1). By
denoting P by N/M and C by its parametrization (from
equation 2), S and T reduce to the following in the case
of a stable feedback loop:

S = M (Y −NQ) (3)

T = N (X +MQ) (4)

The sensitivity function S gets its name from another
standard result in feedback control theory: since S is the
transfer function from r(t) to e(t), setting an error bound
of |e(t)| < ε amounts to the requirement:

‖S‖∞ = sup
s
S < ε (5)

A procedure for designing C(s) given a parametrization
(from equation 2), the transfer functions S and T , and
r(t), can be stated as:

1. Use equations 3, 4 and 5 to find constraints on Q

2. Solve for Q ∈ A

3. Back-substitute to get the controller transfer func-
tion C(s)

The only missing part needed before using the tech-
niques described in section 2, are the transfer functions
from the cavity, piezoelectric elements and photodiode.
Once these transfer functions are measured or approxi-
mated, it would be possible to find a controller transfer
function (section 2.1), translate it in digital form (section
2.2) and wire the digital fitlter into the FPGA (section 4).

Until the measurements are made, we will concentrate
on making an arbitrary filter with the FPGA. The rest
of this work will only be concerned with making a digital
filter apparatus, a crucial step before creating a feedback
locking system.

2.2 Digital Implementation

After having specified the controller transfer function
C(s) from section 2.1, this section explains how to realize
the controller using digital (or discrete-time) hardware.
The convention used is that digital signals are repre-
sented with square brackets (y[n]), where n is an integer
representing the number of time steps (if t is time, and
T the sampling period, n is such that t = n · T ).

The z-plane

Analog filters are analyzed using the Laplace Transform
and the s-plane, because such filters are described by lin-
ear differential equations. However, discrete-time filters
are described using difference equations, and are ana-
lyzed using the z-transform. The z-transform of a digital
signal y[n] is written ZT {y[n]} = Y (z), and the trans-
form is defined as:

ZT {y[n]} =

n=∞∑
n=−∞

y[n]z−n (6)

for z a complex number. A typical difference equation
for a digital filter with input x[n] and output y[n] has
the following form:

y[n] = a0x[n] + a1x[n− 1] + a2x[n− 2] + ...

+ b1y[n− 1] + b2y[n− 2] + ... (7)

The z-transfer function is defined similarly to the trans-
fer function of equation 1: if Y (z) and X(z) are the
z-transforms of y[n] and x[n] respectively, then the z-
transfer function H(z) is defined as:

H(z) = Y (z)/X(z) (8)

The main advantage of using the z-transform is the link
between a system’s difference equation and its z-transfer
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function [5, p. 246]; for a general difference equation
(equation 7), the transfer function is given by:

H(z) =
a0 + a1z

−1 + a2z
−2 + ...

1− b1z−1 − b2z−2 − ...
(9)

Therefore, given a z-transfer function H(z), one can
find the difference equation; the difference equation can
then be implemented in an FPGA. Additionally, one
can find the frequency response (both gain and phase)
of a z-transfer function H(z) by subsituting H(e−iω);
Then, the gain response is given by |H(e−iω)|, and the
phase response by arg(H(e−iω)). [6, p. 611].

We also note that the frequency response of a digital
filter is inherently symmetric. The gain response will al-
ways be symmetric around the half-sampling frequency,
while the phase response will always be antisymmetric.
This is due to the discrete-time nature of sampling: be-
yond the half-sampling frequency, a sinusoidal signal will
look (after sampling) like a signal of lower frequency, with
phase shift of 180◦ [5, p. 235].

The Bilinear Transform

The z-plane and s-plane are closely related because their
respective transforms are discrete-time and continuous-
time equivalents [6, p. 609]. Similarly to the condition
that no realizable transfer function can have a pole in the
right half of the s-plane, no realizable z-transfer function
can have poles in the |z| ≥ 1 region [6, p. 611].

It is thus reasonable to look for a way of translating a
transfer function H(s) into a z-transfer function G(z) in
the z-plane. Tustin’s Method (or the Bilinear Transform)
is an approximation that relates the z-plane and the s-
plane in a way that preserves the properties of the inital
function (either in going from the z-plane to the s-plane
or vice-vera) [5, p. 450].

From a discretization of time t = n · T (with T the
sampling period), we can express s as s = T−1 ln z. By
Taylor expansion, a first-order approximation of s as a
function of z simplifies to:

s =
2

T

(
z − 1

z + 1

)
(10)

As Oppenheim et al. [5, p. 450] explains, the Bilinear
Transform preserves important properties; most impor-
tantly, it preserves stability [7, p. 212].

Procedure for Designing a Feedback Loop

With the Bilinear Transform, it is now possible to real-
ize a digital filter. First, given a transfer function, the
Bilinear Transform can be used to translate this transfer
function into the z-plane. Second, by relating equations 7
and 9, the system’s difference equation can be computed
and implemented in digital hardware.

3 Design Choices

3.1 Project requirements

A similar apparatus used by Prof. Sankey at Yale could
apply 100 000 corrections per second (that is, it could
react in 10 µm); one requirement is to best this correc-
tion rate by a factor of 10 or more. Another requirement
is that the design should be adaptable: if the appara-
tus is changed (e.g. using a different material for the
membranes), the feedback locking system should be eas-
ily adjustable by the experimenter. The adaptability re-
quirement mandates the use of digital hardware, and this
is why section 2.2 is relevant for the project. Below is an
argument concerning which digital hardware to use.

3.2 System Design

Since typical mechanical noise has a frequency range
from 0 to 100 kHz, it is necessary that signal process-
ing takes place at a higher rate [5, p. 147]. Such a
frequency of processing is not possible on an ordinary
lab computer, since computers proceed linearly; while
computers are fast in carrying simple operations, the
sheer number of operations necessary just to do nothing
(e.g. running the operating system) implies a low
frequency of operation (relative to the project needs)
for analyzing data. In fact, most hardware based on a
central processing unit (CPU) (e.g. Arduino, Rasberry
Pi) would not be suitable because of speed limitations.

The best solution for speed would be to use an
Application-Specific Integrated Circuit (ASIC). Such a
circuit is custom-made as a printed circuit-board for
a single application. The advantage of ASICs is that
they can carry operations simultaneously if the design
specifies it, a clear advantage over CPU-based hardware
; however, once an ASIC has been manufactured, it can
only do one thing. Therefore, using an ASIC for the
feedback locking system would make the system not
adaptable.

There is a solution that is similar in performance to an
ASIC, but can be rewired at will: a Field-Programmable
Gate Array (FPGA). Specifically, an FPGA has a
matrix of transistors, and the user controls the wiring.
When a wiring is implemented and a task is running,
the FPGA cannot be rewired; in this state, it behaves
just like an ASIC.
With its matrix of transistors, an FPGA can implement
any logic operation from Boolean Algebra [8]. Thus, it
can, in principle, carry any operation that a computer
could carry, given enough resources.

The matrix of an FPGA contains logic blocks (array
of transistors that can be wired into any logical circuit),
memory blocks and input/output (I/O) ports [8].
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Moreover, FPGA are often manufactured on boards
that have clocks and external memory.

Because the user can wire the matrix at will, an
FPGA can have many independent circuits running
concurrently; if such a circuit depends on a clock (which
is very common), it is called a process. One example
of processes running concurrently could be writing to
memory and reading to memory; while a computer
would require two clock cycles to perform this task
(read, then write), an FPGA can have a writing process
and a reading process working concurrently, increasing
the speed at which reading/writing can be performed.
Processes are described in greater detail in the following
section.

4 Implementation

To implement a wiring to an FPGA, one must describe
the wiring using a hardware description language (HDL).
The language was chosen to be VHDL (Very high-speed
integrated circuit Hardware Description Language),
because of the quality and amount of information
available. Alternatively, Verilog is another HDL that
could have been used.

The month of May and most of June were devoted
to learning VHDL using Circuit Design and Simulation
with VHDL by V. A. Pedroni [9]. Then, the hardware
was tested, and modifications had to be made. Finally,
we wrote a digital filter VHDL code that could be
uploaded to the FPGA.

4.1 Hardware Characterization and
Modification

While learning VHDL, we researched for hardware
capable of converting analog signals to digital signals,
and vice versa. A Terasic DE0 FPGA development
board was bought, which includes an Altera Cyclone III
FPGA, USB interface, external Random Access Memory
(RAM) of 512 MB, 50 MHz clock, and 80 multi-purpose
I/O pins [10].

To convert between analog signals and digitals signals,
a data conversion card (AD/DA card) with 14-bit
resolution (built to infertace with the DE0 board using
multipurpose pins) was purchased [11]. The AD/DA
card is composed of two data converters (one analog-to-
digital or A/D [12], and one digital-to-analog or D/A
[13]) and additional circuitry needed to protect the
converters and prefilter the input and output [14]. See
figure 3 for a graphical representation of the devices.

Figure 3: Graphic representation of the FPGA board
(top) and data conversion card (bottom) where the ma-
jor components are drawn. Note that the yellow bands
(multipurpose I/O pins) represent the junction point be-
tween the two devices. The input and output circuitry
are detailed in figure 4.

A/D 
converter

D/A 
converter

Input

Output

Figure 4: Circuit schematic of the input and output cir-
cuits wired into the data converter card. A/D and D/A
represent analog-to-digital and digital-to-analog respec-
tively. The components in red rectangles were removed
to allow the A/D and D/A converters to measure low
frequency signals. Modified from [14].
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After receiving the hardware, we noticed that the
AD/DA card can only convert signals with frequencies
between 50 kHz and 20 MHz; this was confirmed by a
Terasic engineer [15]. Because the data converters on
their own are capable of handling all signals below 50
MHz [12] [13], we set to modify the card to allow the
processing of low-frequency signal. Figure 4 shows the
schematic of the input and output circuits. We expect
that capacitors and transformers in series will inhibit the
ability to measure low-frequency signals. Moreover, the
transformers make it impossible to add a voltage offset
to the input or output of the AD/DA card. Therefore,
we removed the capacitor C1 and transformers T1, T2
and T5 in the red rectangles of figure 4.

4.1.1 Group Delay

After the modifications, we are ready to test the hard-
ware. The first important characteristic is the AD/DA
card intrinsic delay (also called group delay); that is,
the time it takes to simply sample and output. A simple
code that wires the output of the A/D converter to
the input of the D/A converter was uploaded to the
FPGA board. Then, to measure the intrinsic delay,
we fed pulses with very small duty cycles (less than
2%) to the input of the A/D converter (sampling at
50 MHz) and swep the input frequency between 1 kHz
and 1 MHz. A delay equivalent to the sampling period
(20 ns during this test) is expected because the data
converters take one sampling period to read or write
data. Any additional delay represent the group delay of
the AD/DA card.

The results for frequencies 8.2 kHz and 1 MHz are
presented in figure 5, which show that the group delay of
this AD/DA card revolves around 250 ns for all frequen-
cies. The frequency-independence of the group delay is
consistent with [5, p. 243].

This group delay imply that AD/DA card can react
in 270 ns at best (at a sampling frequency of 50 MHz),
which means a correction frequency of 3.7 MHz. This is
37 times faster than what was used by Prof. Sankey at
Yale. However, even using a faster external clock, the
AD/DA card group delay will always be 250 ns at least,
which gives a correction rate of 4 MHz at best.

4.1.2 Intrinsic Transfer Function

The second important characteristic of the AD/DA card
is its intrinsic transfer function. To measure this transfer
function, we wire the input of the AD/DA card directly
to its output, so that we are wiring the transfer function
Y (s)/X(s) = 1. To measure the transfer function, we
use a Zurich Instruments Lock-in Amplifier located in

(a) Input frequency of 8.2 kHz and duty cycle of 0.48
%.

(b) Input frequency of 1 MHz and duty cycle of 2.00 %

Figure 5: Group delay characterization of the data con-
version card at a sampling frequency of 50 MHz. The
input signal (blue) is a pulse of 500 mV amplitude. The
output of the data conversion card is shown in yellow.
The time offset between the two peaks shows the group
delay to be around 250 ns for low-frequencies and high-
frequencies alike (taking into account the 20 ns sampling
period).

the Sankey Laboratory, and sweep the frequency between
1 kHz and 1 MHz using an input with amplitude of 0.2V.

The results are plotted in figure 6. While the linear
phase response is expected from the constant group de-
lay, the amplitude response acts as a low-pass filter with
a very small cutoff frequency (less than 10 % of the sam-
pling frequency). We note that changing the sampling
frequency does not alter the overall shape shown in fig-
ure 6; for example, for a sampling frequency of 1000
Hz, the artifact shown in figure 6 still occurs around
0.5fs. This artifact is documented in the DA converter’s
datasheet [13]. However, due to interference, the gain
and phase responses of the artifact is not constant in
time. Finally, the last important characteristic of the dig-
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Figure 6: Measurement of the AD/DA card’s intrinsic
transfer function, taken at a sampling frequency fs =
1 MHz. The input has an amplitude of 0.2V. We note
that an artifact always appears near 0.5fs, but that its
amplitude is not constant in time.

ital filter apparatus is the dynamic range. From the con-
verter datasheets, we know the A/D converter can read
voltages between 0 and 1V, and assigns a 14 bit number
to that voltage (between 0 and 16383) [12]. Moreover,
the D/A converter also takes a 14 bit number, and out-
puts a corresponding voltage between 0 and 1V [13]. This
requires that all inputs have a voltage offset so that the
input never has negative voltages. Negative voltages are
converted just like a voltage of 0V by the A/D converter
[12].

Hardware Description Language

The following section describes what we have learned
about HDL (and more specifically VHDL) during the
first part of the project.

While the use of HDL is similar to computer pro-
gramming, the philosophy behind HDL “programs” is
quite unique. The user describes a function, that is,
how the ouputs are related to the inputs. Once this
is done, the HDL program is then compiled, which
amounts to a translation to a truth table of the same
form as 1, and the creation of the simplest logical circuit
that implements the truth table. Finally, the compiled
program is then run through a fitter, which determines
how to wire the transistors in the FPGA. Note that
before the fitting operation, the code is entirely portable;
it is possible to move between different FPGAs with an
HDL program, and the fitter will make sure that the
program is wired appropriately.

For example, consider the logical half-adder, which
adds two bits A and B, and returns the sum (S), and
the carry bit (C). A half-adder can be represented in

A B S C

0 0 0 0
0 1 1 0
1 0 1 0
1 1 1 1

Table 1: Truth table for a logical half-adder, with inputs
A and B, and ouputs sum (S) and carry (C). The sum
and carry are computed according to equation 11

logic form as the following operations:

S = A XOR B = A ·B +A ·B (11)

C = A AND B

where A = NOT A and A · B = A OR B. Alterna-
tively, the half-adder can be described by a truth table,
as shown in tab. 1.

By describing equation 11 in HDL, the compiler will
try to simplify the logical circuit as much as possible
before passing on to the fitting process. The advantage
is that the compiler can look for the simplest logical
circuit that has the same truth table as table 1, rather
than reproducing exactly what the user has written.
This is much different than programming languages
such as Python, which does exactly what the user write.
It also implies that even an HDL beginner with no
experience can produce fully-optimized circuits.

4.2 Realizing a Digital Filter

As stated previously, one main advantage of FPGAs over
traditional computer is the ability to do computations
in parallel. In VHDL, an independant computation
is called a process. The idea is to divide our VHDL
program into the smallest independant chunks, and
translate them into processes; then, interference is
minimized, errors are easier to track, and computation
is much faster. The final VHDL code is available in
Appendix B.

Memory

While there are many ways (in theory) to realize a
digital filter using an FPGA, all realizations have a
common component: memory. Since we want to do
computations using current and previous inputs (x[n− i]
for i ≥ 0) and previous outputs (y[n − j] for j ≥ 1),
it is necessary that the inputs and outputs be stored
somewhere. While our first (unsuccessful) attempts
involved using external RAM, we will only describe the
realization using registers.
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A register is a logical circuit capable of holding a
binary value for one clock cycle. It is possible to tell the
register when to be completely transparent (thus acting
as a wire), or when to hold its value until the next
clock cycle. There are tens of thousands of registers
in a typical FPGA (15 408 in our FPGA [10], each
holding one bit of information. By using 14 registers
together, it is possible to hold an input x[n] or output
y[n] (since any input from the A/D converter or any
output from the D/A converter are 14 bit numbers).
By using 28 registers, it is possible to hold two values
(e.g. x[n] and x[n − 1]), and so on. The advantage of
using registers is that all the information contained in
the register array can be read at once. This is much
faster than the RAM on our board, which can only
manipulate two 16-bit numbers each 55 ns (3 clock
cycles at 50 MHz) [10]. Therefore, using registers, it is
possible to compute a difference equation of the form of
equation 7 in a single clock cycle, whereas a RAM-based
computation would have taken three clock cycles per
term in the difference equation. Thus, the use of
registers enables the use of a faster sampling frequency,
and lower group delay due to an almost instant response.

The idea of register memory is the following: assume
we want to keep the last six 14-bit inputs; we require 84
registers. We arrange those registers into a vector; the
first 14 registers are one coordinate, then the registers 15
to 28 are another coordinate, and so on. At the start of
a sampling cycle, we store the current input x[n] in the
first coordinate of the register array. At the same time,
we move the first coordinate to the second, the second
coordinate to the third, and so on. Therefore, during the
nth sampling step, the register array has the form:

(x[n], x[n− 1], x[n− 2], ..., x[n− 5])

At the next step (step n+1), the register array is com-
posed as follows:

(x[n+ 1], x[n], x[n− 1], ..., x[n− 4])

The main advantages of these register arrays above
are simplicity and speed. It is more simple to use
because there is no need to track where each input is
in the memory, as with RAM: the input of the current
cycle is always in the first coordinate, the input from last
cycle in the second, and so on. And the register arrays
are faster because all coordinates can be read/written
to at the same time.

By using two register arrays in parallel (in two
VHDL processes), we can store the A/D converter
inputs (x[n], x[n − 1], ...) in one array, and the fil-
ter outputs (y[n − 1], y[n − 2], ...) in another. Then
at each clock cycle, we can retrieve the coordinates
we need and prepare to compute the current output y[n].

Arithmetic

To fully implement a difference equation of the form of
equation 7, we also need to implement a way of quickly
multiplying a factor and an input (or output). The
limited amount of transistors in the FPGA means we
cannot implement floating point arithmetic (which is
used in CPU-based hardware). While floating point
arithmetic is the most precise arithmetic in approxi-
mating real-numbers arithmetic, it is also the slowest.
Therefore, we chose to use fixed point arithmetic, which
we now explain.

The fastest arithmetic that can be done on a FPGA is
integer arithmetic. Multiplying two integers (in the form
of binary numbers) is almost instant, taking only one
clock cycle. The idea behind fixed point arithmetic is to
use integer arithmetic for improved speed over floating
point arithmetic, at the cost of precision. The name
“fixed point” refers to the position of the point in the
representation. A typical fixed point number is of the
form a.b, where both a and b are binary numbers. For
example, given a = 01 and b = 101, the number a.b is
decomposed as follows:

a.b =
(
0 · 21 + 1 · 20

)
+
(
1 · 2−1 + 0 · 2−2 + 1 · 2−3

)
a.b = (110) + (0.510 + 0.12510) = 1.62510 (12)

where the first parenthesis is the binary representation of
a, the second parenthesis is the binary representation of
.b, and the subscript 10 represents numbers in base 10. In
a fixed point arithmetic, we must fix the length (in bits)
of b, called the precision of the calculation. For example,
set the precision to p. Then, given a multiplication a.b×
c.d, we can use integer arithmetic as follows:

a.b× c.d = (a+ .b)× (c+ .d)

=
(a+ .b) · 2p × (c+ .d) · 2p

2p+1

=
(a · 2p + b)× (c · 2p + d)

2p+1
(13)

The logic of equation 13 is similar to computing
0.3× 0.5 = (0.3 · 10× 0.5 · 10)/100 = (3× 5)/100 = 0.15.
We note that in the last line of equation 13, the numer-
ator is an integer multiplication, and the denominator
is also an integer. This means that the fixed-point
arithmetic developped this summer only require a com-
bination of basic logic gates, and thus the computation
speed is only limited by the propagation speed of the
electric field in the FPGA [8].

To approach the accuracy of floating point arithmetic,
we chose to implement fixed point arithmetic with a pre-
cision of 32; the factors of equation 7 (typically real num-
bers) are translated using a computer into fixed point
numbers with 32 numbers after the point. Note that
it is very simple to change this precision to any desired
number, and that it does not affect computation speed.
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5 Testing

This section describes the testing done using the arbi-
trary filter program from section 4. For each test filter, a
measurement of the frequency response was made using
the lock-in amplifier. Each filter was set to a sampling
frequency of 1 MHZ; this is done by scaling the 50 MHz
sampling clock. As we will see in section 5.1, this scaling
is not precise.

To account for the AD/DA card’s intrinsic frequency
response, we proceeded to normalize the measurements.

This normalization procedure is made of two pro-
cesses. First, the test filter’s amplitude response is
divided by the AD/DA card’s amplitude response; this
gives the test filter’s normalized gain response. Then,
the AD/DA card’s phase response is subtracted from
the test filter’s phase response, which yields the test
filter’s normalized phase response. The experimental
procedure for measuring the transfer functions is the
same as presented in section 4.1.2.

For brevity, the raw measurements from the lock-in
amplifier can be seen in the following subsection for the
integrator filter; however, for the other filters, the raw
measurements are presented in the appendix A, while
we only present the normalized frequency responses.

We note that on each frequency response, there is an
artifact near one-half of the sampling frequency. This
artifact is a feature of the D/A converter [13], as stated
in the previous section.

5.1 Integrator Filter

The first filter we test is the digital “integrator filter”
[16]. An integrator filter has the following z-transfer
function:

I(z) =
z

z − a
=

1

1− a
z

(14)

From equations 7 and 9, the right side of equation
14 indicates that the integrator filter has a difference
equation of the form y[n] = x[n]− a · y[n− 1]. Note that
the integrator filter is not always stable; since we require
that all poles of the z-transfer function are located inside
the |z| < 1 zone, an integrator filter is stable only if
|a| < 1. For this particular test, we choose a = 0.3.

The raw measurement of frequency response from
the realization of the z-transfer function of equation 14
with a = 0.3 is presented in figure 7, along with the
normalized measurement. The normalized measurement
is compared to the theoretical frequency response (in
black).

We can see that the normalized response on figure
7(b) has the same overall shape as the theoretical curves.

(a) Raw frequency response

(b) Normalized frequency response compared to theo-
retical prediction

(c) Normalized frequency response with theoretical pre-
dictions scaled for a sampling frequency of 1.04 MHz

Figure 7: Response measurements of an integrator fil-
ter with z-transfer function of the form of equation 14
with a = 0.3. Fig. (a) shows the raw frequency response
for the digital filter. Fig. (b) presents the frequency re-
sponse normalized to the AD/DA card’s intrinsic transfer
function presented in figure 6, overlayed to the theoret-
ical predictions at a sampling frequency of 1 MHz. Fig.
(c) shows an instance of the theoretical curves adjusted
for a 1.04 MHz sampling rate. We can conclude that
the digital filter apparatus has an effective sampling rate
close to 1.04 MHz.
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A possible explanation for the horizontal difference in
scaling between the theoretical predictions and the
normalized curves might be due to the sampling clock
not being exactly 1 MHz; the sampling clock is a scaling
of the 50 MHz clock on the FPGA board, and the 50
MHz clock has a frequency uncertainty of ±5% [10].

We can conduct a visual test to try and approximate
the effective sampling frequency. By plotting the theoret-
ical curves over a frequency of 1.04 MHz (as opposed to 1
MHz in figure 7b), the normalized frequency response of
the integrator filter fits the theoretical predictions better.
Figure 7c shows the result of the visual test.

This visual test shows that while we write the FPGA
to sample at 1 MHz, it is sampling near 1.04 MHz in re-
ality, We will adjust the theoretical curves to a sampling
frequency of 1.04 MHz for the rest of this work, which
we call the “effective sampling frequency”.

5.2 Resonance Filter

The second filter to be tested is a resonance filter.
The simplest digital resonance filter has the following
z-transfer function:

R(z) =
1

1 + b1z−1 − b2z−2
(15)

where 0 < b2 < 1 determines the width of the reso-
nance peak (b22 close to one implies narrow peak) [16].
After looking at the frequency response for various val-
ues of (b1, b2), we choose (b1, b2) = (−0.5, 0.25). After
uploading the difference equation y[n] = x[n]− 0.5y[n−
1] + 0.25y[n− 2] into the digital filter apparatus, the fre-
quency response was measured using a lock-in amplifier.
For brevity, the raw measurement is presented in figure I.
The normalized measurements are presented in figure 8,
along with the theoretical curves adjusted for an effective
sampling frequency of 1.04 MHz.

Again, the normalized measurements closely follow the
theoretical predictions of equation 15.

5.3 Double Peak Filter

The last filter to be tested was found by playing with
the coefficients in a difference equation. This filter has a
z-transfer function of the form:

R(z) =
−1 + z−1 − z−2 + z−3

1− 1
5 (z−1 − z−2 + z−3 − z−4)

(16)

This filter is interesting because its phase response has a
lot of sharp features, as can be seen in figure 9.

The normalized frequency response measurement is
presented in figure 10, overlayed with the theoretical pre-
diction presented in figure 9. The raw measurements are

Figure 8: Normalized frequency response measurement
of a resonator with z-transfer function of the form of
equation 15 with (b1, b2) = (−0.5, 0.25), and an effective
sampling frequency of 1.04 MHz.

presented in figure II. Again, ignoring the artifact, the
results are in sync with the theoretical predictions. This
filter is interesting because it completely cancels some
frequencies. This test (along with the two previous sub-
sections) demonstrates that the digital filter setup is pre-
dictable.

6 Conclusion

The present work detailed the necessary mathematics
required for locking a laser to an optical cavity. While
laboratory setup is not final, we decided to implement
an arbitrary digital filter setup until we are ready. We
optimized the performance of the digital filter setup
for speed. We developped a procedure in order to
implement filters, predict their outcome, and test them.
Everything linked to this project is also portable: it does
not depend on any particular FPGA, any particular
filter, memory available, or clock speed. It can also
be quickly customized for more (or less) accuracy, and
various data conversion resolutions.

We have met the goals that were set in section 3.1.
The design was made adaptable: it can be ported in
less than 60 seconds to another FPGA, and modifying
its parameters is easy. The setup currently has a group
delay low enough to permit a correction rate of 3.7 MHz,
an improvement over Prof. Sankey’s last setup (with its
correction rate of 0.1 MHz).

Our results also demonstrate that FPGAs are well
suited to high-speed digital signal processing. The cre-
ation of register memory for almost-instant read and
write operations, and the fast multiplication routine de-
velopped in this work make the digital filter setup only
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Figure 9: Predicted frequency response of the digital
filter with z-transfer function of equation 16. The fre-
quency axis is normalized to the sampling frequency.
This filter is interesting to test because of the sharp fea-
tures in its phase response.

limited by its on-board clock.

We also showed that the digital filter’s performance
was predictable. The artifact might represent a problem
if we continue using our the same AD/DA card. It is
unlikely that we can modify the AD/DA card to get rid of
the artifact; our best bet is to design our filters so that we
are always working in the ≤ 0.5fs regime. Alternatively,
by increasing the sampling frequency, we can “move” this
artifact towards higher values of frequency.

Future Development

While we are satisfied with how the project is going, it is
far from complete. The first concern is about the hard-
ware: the AD/DA card has a group delay that limits the
performance of the digital filter apparatus. In the future,
we might want to build our own AD/DA card; this would
enable the group to use higher-resolution A/D and D/A
converters with lower group delay, and increased input
voltage supported.

There is also an elephant in the room: we need to find
a way to “cancel” the AD/DA card’s intrinsic transfer
function. While it is be possible to correct the AD/DA
card’s gain response for a wide range of frequencies (by
multiplying any digital filter we want to implement by
a high pass filter), any data conversion will result in a
linear phase (as seen on figure 6. Therefore, it might
prove difficult to remove completely the influence of the
digital filter setup, both phase and gain response.

Another development that we will try is to simulate
the transfer functions of the experimental setup (cavity,
laser, photodiode) and test the digital filtering techniques
presented in section 2. This would enable us to prepare
for when the setup is ready.

Figure 10: Normalized frequency response measurement
of a digital filter with z-transfer function of the form of
equation 16, with an effective sampling frequency of 1.04
MHz. The frequency response prediction of figure 9 is
plotted over the data. This plot shows that the digital
filter apparatus can closely replicate sharp phase shifts.

Also, we might want to add keyboard and screen sup-
port to the digital filter apparatus, in order for the ap-
paratus to be computer-independant: it would then be
possible to tweak the digital filter without re-compiling
a VHDL program and re-uploading to the FPGA.
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Appendix A: Figures

Resonance Filter

Figure I: Frequency response measurement of a resonator with z-transfer function of the form of equation 15, with
(b1, b2) = (−0.5, 0.25). The input has amplitude 0.2V.

Double Peak Filter

Figure II: Frequency response measurement of a resonator with z-transfer function of the form of equation 16. The
input has amplitude 0.2V.
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Appendix B: Digital Filtering Code

This appendix contains the VHDL code on which the work of section 5 was done. If you have any questions, do
not hesitate to contact the author. Note: everything preceded by a double dash “–” is a VHDL comment.

-- Author: Laurent Rene de Cotret

-- for Sankeylab

-- Date: July 31st 2013

-- McGill University

--

-- ******* THIS PROGRAM IS MADE TO WORK WITH THE MODIFIED CHANNELS OF THE AD/DA CARD *******

-------------------------------------------------------------------------------------------------------------

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.NUMERIC_STD.ALL;

LIBRARY IEEE_proposed; -- For fixed point calculations

USE IEEE_proposed.FIXED_PKG.ALL;

USE IEEE_proposed.FIXED_FLOAT_TYPES.ALL;

-------------------------------------------------------------------------------------------------------------

ENTITY Abstract_FSM IS

GENERIC (

----- Conversion Parameters -----

resolution: INTEGER := 14; -- Resolution of the AD converter is 14 bits for the

Terasic AD/DA card

precision: INTEGER := 32; -- Number of fractional bits to be used

----- Filter Parameters -----

-- y[n] = a0 x[n] + a1 x[n-1] + a2 x[n-2] + ... + b1 y[n-1] + b2 y[n-2] + ...

-- Change the following coefficients to create a digital filter.

a0: REAL := 0.0;

a1: REAL := 0.0;

a2: REAL := 0.0;

a3: REAL := 0.0;

a4: REAL := 0.0;

a5: REAL := 0.0;

b1: REAL := 0.0;

b2: REAL := 0.0;

b3: REAL := 0.0;

b4: REAL := 0.0;

b5: REAL := 0.0;

b6: REAL := 0.0

);

-- We note that an "OUT" port means the value is going into the AD/DA Card, while an "IN" port is

a value coming from the AD/DA card into the DE0 board

PORT (

----- DATA CONVERSION PORTS -----

AD_output_A: IN UNSIGNED(resolution-1 DOWNTO 0); -- Output of the analog-digital

converter from channel A

AD_output_B: IN UNSIGNED(resolution-1 DOWNTO 0); -- Output of the analog-digital

converter from channel B

AD_OTRA: IN STD_LOGIC; -- Analog-digigal out-of-range indicator for

channel A

AD_OTRB: IN STD_LOGIC; -- Analog-digigal out-of-range indicator for

channel B

AD_enable_A: OUT STD_LOGIC; -- If driven low then channel A is enabled

AD_enable_B: OUT STD_LOGIC; -- If driven low then channel B is enabled

AD_power_on: OUT STD_LOGIC; -- Power-Down Function for Channel A & B
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AD_PLL_A: OUT STD_LOGIC; -- Phase-Lock-Loop (PLL) clock input for

channel A

AD_PLL_B: OUT STD_LOGIC; -- Phase-Lock-Loop (PLL) clock input for

channel B

DA_input_A: OUT UNSIGNED(resolution-1 DOWNTO 0);

DA_input_B: OUT UNSIGNED(resolution-1 DOWNTO 0);

DA_PLL_A: OUT STD_LOGIC;

DA_PLL_B: OUT STD_LOGIC;

DA_WRTA: OUT STD_LOGIC;

DA_WRTB: OUT STD_LOGIC;

DA_MODE: OUT STD_LOGIC; -- if 0, mode = interleaved. If 1, mode = dual

port

----- DE0 PORTS -----

clk: IN STD_LOGIC;

reset: IN STD_LOGIC;

button: IN STD_LOGIC;

led: OUT STD_LOGIC_VECTOR(9 DOWNTO 0) -- To save power, will be driven logic "low"

);

END ENTITY;

--------------------------------------------------------------------------------------

ARCHITECTURE main OF Abstract_FSM IS

--\\\\\\\\\\ MULTIPLICATION FUNCTION //////////--

-- This function takes an output from the ADC and multiplies it by a real number, and outputs

-- the result in sfixed form.

-- As explained in Pedroni 2008, since the function has 2 inputs (factor and AD_output), the function

call will look like:\

-- Example <= mult(factor,AD_output);

-- Note that the input voltage level is added to an offset of 8192 ( or 2**resolution / 2);

-- In this case, a negative factor will not destroy all living things with the force of a thousand suns

-- This offset is then subtracted before output. A "MOD" operator is used to "roll" over the range of 0

to 2**resolution - 1

FUNCTION mult (CONSTANT factor: REAL; SIGNAL AD_output: UNSIGNED ) --inputs

RETURN SFIXED IS

VARIABLE output: SFIXED(2*resolution-1 DOWNTO -precision);

VARIABLE input_level: SFIXED(resolution-1 DOWNTO 0);

BEGIN

input_level := to_sfixed(to_integer(AD_output) - 8192,resolution-1,0); --Conversion from

offset binary to signed fixed point (from [0 to 16383] to [-8192.0 to 8191.0] for

resolution = 14);

output := resize(input_level * to_sfixed(factor,resolution-1,-precision),output’HIGH,

output’LOW); -- Multiplication

RETURN output;

END mult;

--/////////////////////////////////////////////--

----- Memory Signals -----

SIGNAL memory_inputs: UNSIGNED((6*resolution) - 1 DOWNTO 0); -- To memorize the last x inputs,

change the coefficient before "resolution"

SIGNAL memory_outputs: UNSIGNED((6*resolution) - 1 DOWNTO 0); -- To memorize the last x outputs,

change the coefficient before "resolution"

----- Miscellaneous Signals -----

SIGNAL AD_enable: STD_LOGIC; -- Turns the AD converter on (if AD_enable <= ’0’) or off (AD_enable
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<= ’1’)

SIGNAL output: UNSIGNED (resolution - 1 DOWNTO 0);

SIGNAL samp_clk: STD_LOGIC; -- The sampling clock of the filter.

BEGIN

--\\\\\\\\\\ SAMPLING CLOCK //////////--

-- This program creates a sampling clock, generally much slower than the 50 MHz

-- Currently, the clock changes every 25 cycles of clk, which menans samp_clk = 1 MHz

sampling_clock: PROCESS (clk)

VARIABLE prescaler: INTEGER RANGE 0 TO 24;

BEGIN

IF (reset = ’1’) THEN

prescaler := 0;

samp_clk <= ’0’;

ELSIF (clk’EVENT AND clk=’1’) THEN

prescaler := (prescaler + 1) MOD prescaler’HIGH;

IF (prescaler = 0) THEN

samp_clk <= NOT samp_clk;

END IF;

END IF;

END PROCESS sampling_clock;

--\\\\\\\\\\ MEMORY //////////--

--These process modify memory_inputs (and similarly for memory_ouputs) in the following way: every clock

cycle, we affix the last input for the AD converter

-- at the beginning of memory_inputs, while deleting the last digits of memory_inputs. Thus, at any

time, the first "resolution"

-- number of digits of memory_inputs are x[n], the next "resolution" number of digits are x[n-1], etc.

memory_inputs_management: PROCESS (samp_clk) -- Inputs

BEGIN

IF (samp_clk’EVENT AND samp_clk=’0’) THEN

IF (reset = ’1’) THEN

memory_inputs <= (OTHERS => ’0’);

ELSE

memory_inputs <= AD_output_A & memory_inputs(6*resolution - 1 DOWNTO

resolution);

END IF;

END IF;

END PROCESS memory_inputs_management;

memory_outputs_management: PROCESS (samp_clk) -- Ouputs

BEGIN

IF (samp_clk’EVENT AND samp_clk = ’0’) THEN

IF (reset = ’1’) THEN

memory_outputs <= (OTHERS => ’0’);

ELSE

memory_outputs <= output & memory_outputs(6*resolution - 1 DOWNTO

resolution); -- memory_outputs <= y[n] & y[n-1] & y[n-2]

END IF;

END IF;

END PROCESS memory_outputs_management;

--\\\\\\\\\\ OUTPUT CONTROL //////////--

-- This is where the magic happens (i.e. calculations)

filter: PROCESS (samp_clk)

VARIABLE temp_output: SFIXED(16*resolution - 1 DOWNTO 0);

BEGIN

IF (samp_clk’EVENT AND samp_clk=’1’) THEN

-- The following calculation is written in many lines to improve readability, but it will
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be understood by the compiler to be a single calculation

-- because "output" is a variable, and not a signal.

temp_output := resize(mult(a0,memory_inputs(6*resolution - 1 DOWNTO 5*resolution))

-- Feedforward

+ mult(a1,memory_inputs(5*resolution - 1 DOWNTO 4*resolution))

+ mult(a2,memory_inputs(4*resolution - 1 DOWNTO 3*resolution))

+ mult(a3,memory_inputs(3*resolution - 1 DOWNTO 2*resolution))

+ mult(a4,memory_inputs(2*resolution - 1 DOWNTO resolution))

+ mult(a5,memory_inputs(resolution - 1 DOWNTO 0))

+ mult(b1,memory_outputs(6*resolution - 1 DOWNTO 5*resolution)) --Feedback

+ mult(b2,memory_outputs(5*resolution - 1 DOWNTO 4*resolution))

+ mult(b3,memory_outputs(4*resolution - 1 DOWNTO 3*resolution))

+ mult(b4,memory_outputs(3*resolution - 1 DOWNTO 2*resolution))

+ mult(b5,memory_outputs(2*resolution - 1 DOWNTO resolution))

+ mult(b6,memory_outputs(resolution - 1 DOWNTO 0))

, temp_output’HIGH,temp_output’LOW);

END IF;

output <= to_unsigned(to_integer(temp_output) + 12*8192,resolution); -- Output has to be

at most "resolution" number of digits wide. Add one "+8192" per addition in temp_output

END PROCESS filter;

--\\\\\\\\\\ OUTPUT SELECTOR //////////--

sel: PROCESS (samp_clk)

BEGIN

IF (button= ’1’) THEN

DA_input_A <= output;

ELSE

DA_input_A <= to_unsigned(to_integer(mult(1.0,AD_output_A))+8192,resolution);

END IF;

END PROCESS sel;

--\\\\\\\\\\ TEMPERATURE CONTROL \\\\\\\\\\--

temp_control: PROCESS (reset)

BEGIN

IF (reset = ’1’) THEN

AD_power_on <= ’0’; -- Logic low = disabled

ELSE

AD_power_on <= ’1’; -- enabled

END IF;

END PROCESS temp_control;

--\\\\\\\\\\ POWER SETTINGS \\\\\\\\\\--

AD_enable_A <= ’0’; -- AD converter CH A enabled

AD_enable_B <= ’0’; -- AD converter CH B enabled

AD_PLL_A <= samp_clk;

AD_PLL_B <= samp_clk;

DA_MODE <= ’1’;

DA_PLL_A <= NOT samp_clk;

DA_PLL_B <= NOT samp_clk;

DA_WRTA <= samp_clk;

DA_WRTB <= samp_clk;

END ARCHITECTURE;
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